Exceptional points, non-normal matrices, hierarchy of spin matrices and an eigenvalue problem
نویسندگان
چکیده
منابع مشابه
F eb 2 01 3 Exceptional Points , Nonnormal Matrices , Hierarchy of Spin Matrices and an Eigenvalue Problem
Kato [1] (see also Rellich [2]) introduced exceptional points for singularities appearing in the perturbation theory of linear operators. Afterwards exceptional points and energy level crossing have been studied for hermitian Hamilton operators [3, 4, 5, 6, 7, 8, 9, 10] and non-hermitian Hamilton operators [11, 12, 13, 14, 15, 16] by many authors. Here we consider the finite dimensional Hilbert...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملon the nonnegative inverse eigenvalue problem of traditional matrices
in this paper, at rst for a given set of real or complex numbers with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which is its spectrum. in continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملThe inverse eigenvalue problem via orthogonal matrices
In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvec...
متن کاملAn inverse eigenvalue problem for symmetrical tridiagonal matrices
We consider the following inverse eigenvalue problem: to construct a symmetrical tridiagonal matrix from the minimal and maximal eigenvalues of all its leading principal submatrices. We give a necessary and sufficient condition for the existence of such a matrix and for the existence of a nonnegative symmetrical tridiagonal matrix. Our results are constructive, in the sense that they generate a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Physics C
سال: 2014
ISSN: 0129-1831,1793-6586
DOI: 10.1142/s0129183114500594